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Links: undirected (symmetrical) 

Graph:
      

Directed links :
URLs on the www
phone calls 
metabolic reactions
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UNDIRECTED VS. DIRECTED NETWORKS

Undirected Directed
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Links:  directed (arcs). 

Digraph = directed graph:

Undirected links :
coauthorship links
Actor network
protein interactions

An undirected 
link is the 
superposition of 
two opposite 
directed links.
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Degree, Average Degree and Degree 
Distribution

Section 2.3     
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A BIT OF STATISTICS



N – the number of nodes in the graph
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AVERAGE DEGREE
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Degree distribution 
P(k): probability that a
 randomly chosen node 
has degree k

Nk = # nodes with degree k

P(k) = Nk / N        plot

DEGREE DISTRIBUTION



DEGREE DISTRIBUTION



Discrete Representation: pk is the probability that a node has degree k. 

Continuum Description:   p(k) is the pdf of the degrees, where
 
 

represents the probability that a node’s degree is between k1 and k2. 

Normalization condition:

where Kmin is the minimal degree in the network.
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DEGREE DISTRIBUTION 



Adjacency matrix

Section 2.4     



Aij=1 if there is a link between node i and j

Aij=0 if nodes i and j are not connected to each other.
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ADJACENCY MATRIX

Note that for a directed graph (right) the matrix is not symmetric.
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if there is a link pointing from node j and i 

if there is no link pointing from j to i.



ADJACENCY MATRIX AND NODE DEGREES
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a    b    c    d    e    f    g    h

a    0    1    0    0    1    0    1    0

b    1    0    1    0    0    0    0    1

c    0    1    0    1    0    1    1    0

d    0    0    1    0    1    0    0    0

e    1    0    0    1    0    0    0    0

f    0    0    1    0    0    0    1    0

g    1    0    1    0    0    0    0    0

h    0    1    0    0    0    0    0    0

ADJACENCY MATRIX
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Real networks are sparse

Section 4     



The maximum number of links a network 
of N nodes can have is:

A graph with degree L=Lmax is called a complete graph, 
and its average degree is <k>=N-1
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COMPLETE GRAPH



Most networks observed in real systems are sparse: 

L <<  Lmax 
or 

<k> <<N-1.  

 WWW (ND Sample): N=325,729; L=1.4 106  Lmax=1012  <k>=4.51
 Protein (S. Cerevisiae): N=    1,870; L=4,470  Lmax=107  <k>=2.39 
 Coauthorship (Math): N=  70,975; L=2 105  Lmax=3 1010 <k>=3.9 
 Movie Actors:   N=212,250; L=6 106  Lmax=1.8 1013 <k>=28.78
 
             (Source: Albert, Barabasi, RMP2002)
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REAL NETWORKS ARE SPARSE



ADJACENCY MATRICES ARE SPARSE
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WEIGHTED AND UNWEIGHTED 
NETWORKS
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WEIGHTED AND UNWEIGHTED NETWORKS

𝑨𝑨𝒊𝒊𝒊𝒊 = 𝒘𝒘𝒊𝒊𝒊𝒊  



GRAPHOLOGY 1

Unweighted
(undirected) 

Weighted
(undirected) 
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protein-protein interactions, www Call Graph, metabolic networks
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GRAPHOLOGY 3

Complete Graph
(undirected) 
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Actor network, protein-protein interactions
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The maximum number of links a network 
of N nodes can have is:
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METCALFE’S LAW



BIPARTITE NETWORKS 
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bipartite graph (or bigraph) is a graph whose nodes can be divided 
into two disjoint sets U and V such that every link connects a node in U to 
one in V; that is, U and V are independent sets. 

Examples:

Hollywood actor network
Collaboration networks
Disease network (diseasome)

BIPARTITE GRAPHS

Network Science: Graph Theory 

http://en.wikipedia.org/wiki/Graph_(mathematics)
http://en.wikipedia.org/wiki/Disjoint_sets
http://en.wikipedia.org/wiki/Independent_set_(graph_theory)


Gene network

GENOME

PHENOMEDISEASOME  

Disease network

Goh, Cusick, Valle, Childs, Vidal & Barabási, PNAS (2007)

GENE NETWORK – DISEASE NETWORK
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Y.-Y. Ahn, S. E. Ahnert, J. P. Bagrow, A.-L. Barabási  Flavor network and the principles 
of food pairing , Scientific Reports 196, (2011).

Ingredient-Flavor Bipartite Network
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PATHOLOGY
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A path is a sequence of nodes in which  each node is adjacent to the next one

Pi0,in  of length n between nodes i0 and in is an ordered collection of n+1 nodes and n links 
 

• In a directed network, the path can follow only the direction of an arrow. 
Network Science: Graph Theory 

PATHS



The distance (shortest path, geodesic path) between two 
nodes is defined as the number of edges along the shortest 
path connecting them.

*If the two nodes are disconnected, the distance is infinity.

In directed graphs each path needs to follow the direction of 
the arrows.
Thus in a digraph the distance from node A to B (on an AB 
path) is generally different from the distance from node B to A 
(on a BCA path).

Network Science: Graph Theory 

DISTANCE IN A GRAPH        Shortest Path, Geodesic Path
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CONNECTEDNESS
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Connected (undirected) graph: any two vertices can be joined by a path.
A disconnected graph is made up by two or more connected components.   

Bridge: if  we erase it, the graph becomes disconnected. 

Largest Component: 
Giant Component

The rest: Isolates
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CONNECTIVITY OF UNDIRECTED GRAPHS
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The adjacency matrix of a network with several components can be written in a block-
diagonal form, so that nonzero elements are confined to squares, with all other elements 
being zero:

Network Science: Graph Theory 

CONNECTIVITY OF UNDIRECTED GRAPHS        Adjacency Matrix



Strongly connected directed graph: has a path from each node to 
every other node and vice versa (e.g. AB path and BA path).
Weakly connected directed graph: it is connected if we disregard the
edge directions.

Strongly connected components can be identified, but not every node is part
of a nontrivial strongly connected component.   

In-component: nodes that can reach the scc, 
Out-component: nodes that can be reached from the scc. 
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CONNECTIVITY OF DIRECTED GRAPHS
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Section 2.9     

Finding the Connected Components of a Network

1. Start from a randomly chosen node i and perform a BFS (BOX 2.5). 
Label all nodes reached this way with n = 1.

2. If the total number of labeled nodes equals N, then the network is 
connected. If the number of labeled nodes is smaller than N, the 
network consists of several components. To identify them, proceed to 
step 3.

3. Increase the label n → n + 1. Choose an unmarked node j, label it 
with n. Use BFS to find all nodes reachable from j, label them all with n. 
Return to step 2.



Clustering coefficient
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Clustering coefficient: 
     what fraction of your neighbors are connected?

Node i with degree ki

Ci in [0,1]

Network Science: Graph Theory 

CLUSTERING COEFFICIENT

Watts & Strogatz, Nature 1998.



Clustering coefficient: 
     what fraction of your neighbors are connected?

Node i with degree ki

Ci in [0,1]
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CLUSTERING COEFFICIENT

Watts & Strogatz, Nature 1998.



Clustering coefficient and Global clustering 
coefficient

     what fraction of your neighbors are connected?

Node i with degree ki

Ci in [0,1]

Network Science: Graph Theory 

CLUSTERING COEFFICIENT

Watts & Strogatz, Nature 1998.

∆

𝐶𝐶∆ =
3 ∗ ∆

<



Clustering coefficient and Global clustering 
coefficient

     what fraction of your neighbors are connected?

Node i with degree ki

Ci in [0,1]
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CLUSTERING COEFFICIENT

Watts & Strogatz, Nature 1998.
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summary
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Degree distribution:   P(k)

Path length:      <d>   

Clustering coefficient:

Network Science: Graph Theory 

THREE CENTRAL QUANTITIES IN NETWORK SCIENCE



3
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GRAPHOLOGY 1

Undirected Directed
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Actor network, protein-protein interactions WWW, citation networks
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GRAPHOLOGY 2

Unweighted
(undirected) 

Weighted
(undirected) 
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protein-protein interactions, www Call Graph, metabolic networks
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GRAPHOLOGY 3

Self-interactions Multigraph
(undirected) 
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Protein interaction network, www Social networks, collaboration networks
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GRAPHOLOGY 4

Complete Graph
(undirected) 
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Actor network, protein-protein interactions
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GRAPHOLOGY: Real networks can have multiple characteristics

WWW >     directed multigraph with self-interactions

 

Protein Interactions >  undirected unweighted with self-interactions

Collaboration network >           undirected multigraph or weighted.

Mobile phone calls >                           directed, weighted.        

Facebook Friendship links >                                  undirected, 
unweighted.



A. Degree distribution:    pk  = {0.25; 0.5; 0.25}

B. Path length:      <d> = 1.33   
C. Clustering coefficient:
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THREE CENTRAL QUANTITIES IN NETWORK SCIENCE

𝑪𝑪𝒊𝒊 =
𝟐𝟐𝒆𝒆𝒊𝒊

𝒌𝒌𝒊𝒊(𝒌𝒌𝒊𝒊 − 𝟏𝟏)

A)                                               B)   <d>  = 1.33          C)   C1 = 0; C2 = 1/3 = 0.33
                                                            dmax= 2                      C3 = C4 = 1/1 = 1   
                                                                                              <C> = 1.33/4=0.33
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d1,2=d2,3=d2,4=d3,4=1
d1,3=d1,4=2 = dmax
<d>=(4*1+2*2)/6=1.33



protein-gene 
interactions

protein-protein 
interactions

PROTEOME

GENOME

Citrate Cycle

METABOLISM

Bio-chemical 
reactions



Metabolic Network









A CASE STUDY: PROTEIN-PROTEIN INTERACTION NETWORK

Network Science: Graph Theory 

Undirected network
N=2,018 proteins as nodes
L=2,930 binding interactions as links. 
Average degree  <k>=2.90. 

Not connected:  185 components
 the largest (giant component) 1,647  
nodes



A CASE STUDY: PROTEIN-PROTEIN INTERACTION NETWORK

Network Science: Graph Theory 

pk is the probability that a 
node has degree k. 

Nk = # nodes with degree k

Nk = N* pk    

There is the same 
number of hubs
with the increasing
node degrees



A CASE STUDY: PROTEIN-PROTEIN INTERACTION NETWORK

Network Science: Graph Theory 

dmax=14

<d>=5.61



A CASE STUDY: PROTEIN-PROTEIN INTERACTION NETWORK

Network Science: Graph Theory 

<C>=0.12



Node deg cc paths deg cc paths deg cc paths

1 3 1 3*1+2*2+2*3=13 3 0.33 3*1+2*2+2*3=13 2 0 2*1+2*2+3+4+5=18

2 3 1 3*1+2*2+2*3=13 2 1 2*1+2*2+2*3+4=16 2 0 2*1+2+3+4+5+6=22

3 5 0.6 5*1+2*2=9 2 0 2*1+4*2+3=13 2 0 2*1+2*2+2*3+4=16

4 5 0.6 5*1+2*2=9 3 0.33 3*1+2*2+2*3=13 1 0 1+2+3+4+5+6+7=28

5 5 0.6 5*1+2*2=9 2 0 2*1+4*2+3=13 2 0 2*1+2*2+2*3+4=16

6 5 0.6 5*1+2*2=9 3 0.33 3*1+2*2+2*3=13 2 0 2*1+2*2+3+4+5=18

7 3 1 3*1+2*2+2*3=13 3 0.33 3*1+2*2+2*3=13 1 0 1+2+3+4+5+6+7=28

8 3 1 3*1+2*2+2*3=13 2 1 2*1+2*2+2*3+4=16 2 0 2*1+2+3+4+5+6=22

ave 4 0.8 1.571428571 2.5 0.33 1.928571429 1.75 0 3

max 5 1 3 3 1 4 2 0 7

N=8, E=16                                 N=8, E=10                                    N=8, E=7 

All edges are bridges
No cycles

1               2

3               4  

5               6

7               8



Introduction
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RANDOM NETWORK MODEL

Network Science: Random Networks 



The random network model

Section 3.2     
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Erdös-Rényi model (1960)

Connect with probability p

p=1/6  N=10 

<k> ~ 1.5

Pál Erdös
(1913-1996)

Alfréd Rényi
(1921-1970)

RANDOM NETWORK MODEL

Network Science: Random Networks 



RANDOM NETWORK MODEL

Definition:

 A random graph is a graph of N nodes where each pair 
of nodes is connected by probability p.

Network Science: Random Networks 



RANDOM NETWORK MODEL

p=1/6
 N=12

L=8 L=10 L=7

Network Science: Random Networks 



RANDOM NETWORK MODEL

p=0.03
 N=100

Network Science: Random Networks 



The number of links is variable

Section 3.3     
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RANDOM NETWORK MODEL

p=1/6
 N=12

L=8 L=10 L=7

Network Science: Random Networks 



RANDOM NETWORK MODEL

p=0.03
 N=100

Network Science: Random Networks 



The number of links is variable

Section 3.3     
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RANDOM NETWORK MODEL

p=1/6
 N=12

L=8 L=10 L=7

Network Science: Random Networks 



Number of links in a random network

P(L): the probability to have exactly L links in a network of N nodes and probability p:

Network Science: Random Networks 

The maximum number of links 
in a network of N nodes.

Number of different ways we can choose 
L links among all potential links.

Binomial distribution...



MATH TUTORIAL     Binomial Distribution: The bottom line

Network Science: Random Networks 
http://keral2008.blogspot.com/2008/10/derivation-of-mean-and-variance-of.html



RANDOM NETWORK MODEL

P(L): the probability to have a network of exactly L links

Network Science: Random Networks 

•The average number of links <L> in a random graph

•The standard deviation



Degree distribution

Section 3.4     
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DEGREE DISTRIBUTION OF A RANDOM GRAPH

Network Science: Random Networks 

As the network size increases, the distribution becomes increasingly narrow—we are 
increasingly confident that the degree of a node is in the vicinity of <k>.

Select k 
nodes from N-1 probability of 

having k edges

probability of 
missing N-1-k
edges



DEGREE DISTRIBUTION OF A RANDOM GRAPH
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For large N and small k, we can use the following approximations:

for



POISSON DEGREE DISTRIBUTION

Network Science: Random Networks 

For large N and small k, we arrive at the Poisson distribution:



DEGREE DISTRIBUTION OF A RANDOM GRAPH

Network Science: Random Networks 

P(
k)

k

<k>=50
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