Frontiers of Network Science
Fall 2023

Class 3: Graph Theory & Random Networks
(Chapter 2-3 in Textbook)

Boleslaw Szymanski

based on slides by Albert-Laszl6 Barabasi & Roberta Sinatra






UNDIRECTED VS. DIRECTED NETWORKS

Undirected Directed
Links: undirected (symmetrical) Links: directed (arcs).
Graph: Digraph = directed graph:

An undirected
link is the
superposition of
two opposite
directed links.

Undirected links : Directed links :
coauthorship links URLs on the www
Actor network phone calls

protein interactions metabolic reactions



NETWORK

Internet

wWww

Power Grid

Mobile Phone Calls
Email

Science Collaboration
Actor Network
Citation Network

E. Coli Metabolism

Protein Interactions

NODES

Routers

Webpages

Power plants, transformers
Subscribers

Email addresses

Scientists

Actors

Paper

Metabolites

Proteins

LINKS

Internet connections
Links

Cables

Calls

Emails
Co-authorship
Co-acting

Citations

Chemical reactions

Binding interactions

DIRECTED

UNDIRECTED

Undirected
Directed
Undirected
Directed
Directed
Undirected
Undirected
Directed
Directed

Undirected

192,244
325,729
4,941
36,595
57194
23,133
702,388
449,673
1,039
2,018

609,066
1,497134
6,594
91,826
103,731
93,439
29,397,908
4,689,479
5,802

2,930



Degree, Average Degree and Degree
Distribution



A BIT OF STATISTICS

BRIEF STATISTICS REVIEW Standard deviation:
Four key quantities characterize P
2
a sample of Nvalues x, ..., X, : o = |—) (x —(x
1 N X N ;( i < >)

Average (mean):
Distribution of x:

+...+ 1 ZN
(x) = 7 AR5 Xy _ .
N N =1 p = i 6
* N 21.
th .
The n™ moment: where p_follows

() = X{+x5 4+ Xy
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AVERAGE DEGREE

O

—O0——

(k)= A3k (k)= %L

} N — the number of nodes in the graph

Undirected

Directed




DEGREE DISTRIBUTION

Degree distribution
P(k): probability that a 0.75
randomly chosen node
has degree k

Nk = # nodes with degree k ¢ :

P(k)=N«k/N © plot -



DEGREE DISTRIBUTION

a) 0.5 o : : ; : ; : .
0.45 |
0.4 .
0.35 |
0.3
P« 0.25
02 |® .
0.15
01re
P
0 M
0 10 20 30 40 50 60 70 B0 90 100
K
c) 100 — ————
10-1 L] p.
e
Pk 102 B hubs
S
8
®own
103 L
- o God
10-4 1 fd s aaal L a2 aaaal
10° 10! 10?

Image 2.4b



DEGREE DISTRIBUTION

Discrete Representation: p, is the probability that a node has degree k.

Continuum Description: p(k) is the pdf of the degrees, where

T p(k)dk

&

represents the probability that a node’s degree is between k, and k.

Normalization condition:

il’k =1 T p(k)dk =1

K .

itk

where K, is the minimal degree in the network.



Adjacency matrix



ADJACENCY MATRIX

Aij=1 if there is a link between node j and j

Aij=0 if nodes / and j are not connected to each other.

O 1 0 1 O 0 0 O
1 0 0 1 B 1 0 0 1
Aij = 00 0 1 Aij = 0O 0 0 1
1 1 1 0 1 0 0 O

Note that for a directed graph (right) the matrix is not symmetric.

Az-j = 1 if there is a link pointing from node j and i

Aij = 0 if there is no link pointing from j to i.




ADJACENCY MATRIX AND NODE DEGREES
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Real networks are sparse



COMPLETE GRAPH

The maximum number of links a network

of N nodes can have is: | :(N):N(N—l)
e 2 2 e o

A graph with degree L=L__, is called a complete graph,
and its average degree is <k>=N-1



REAL NETWORKS ARE SPARSE

Most networks observed in real systems are sparse:

WWW (ND Sample):
Protein (S. Cerevisiae):
Coauthorship (Math):
Movie Actors:

L << Lmax
or
<k> <<N-1.
N=325,729;  L=1.4 108
N= 1,870; L=4,470
N= 70,975; L=210°
N=212,250; L=6 10

Lo =102 <k>=4.51
Lax=107 <k>=2.39
Lax=3 1070 <k>=3.9
Lax=1.8 1013 <k>=28.78

max

(Source: Albert, Barabasi, RMP2002)



ADJACENCY MATRICES ARE SPARSE




WEIGHTED AND UNWEIGHTED
NETWORKS



WEIGHTED AND UNWEIGHTED NETWORKS

Aij = wi;



Unweighted Weighted
(undirected) (undirected)
(0 1 1 O0) (0 2 05 0)
1 0 1 1 2 0 1 4
A, = A, =
J 1 1 0O O 7105 1 0 0
0 1 o 0O . O 4 0 0/
A. =0 A, =A, A.=0 A, =4,
N N
L—%LJZIAI.J. <k>:% L—%”Zlnonzero(Aij) <k>= %

protein-protein interactions, www Call Graph, metabolic networks



Complete Graph

(undirected)

[ ] @
] =
(0 1 1 1) ° °
1 0 1 1 4 5
A, =
7 11 1 0 1 . A
1l 1 1 0 "
AiiZO Ai;tjzl
L:mezm <k>=N-1

Actor network, protein-protein interactions



METCALFE’S LAW
$

" Cost=N

Critical Mass Crossover

Dollars

Value=N’

N y E
Devices
The maximum number of links a network . 5
. N _ ° °
of N nodes can haveis: :(ZJ:%D ; ;
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BIPARTITE NETWORKS



BIPARTITE GRAPHS

bipartite graph (or bigraph) is a graph whose nodes can be divided
into two disjoint sets U and V such that every link connects a node in U to
one in V; that is, U and V are independent sets.

U V')

Projection U Projection V

Examples:

Hollywood actor network
Collaboration networks
Disease network (diseasome)



http://en.wikipedia.org/wiki/Graph_(mathematics)
http://en.wikipedia.org/wiki/Disjoint_sets
http://en.wikipedia.org/wiki/Independent_set_(graph_theory)

GENE NETWORK - DISEASE NETWORK

XRCCE: CERAF >

CXRCCE
{GCoMDT
CETHID) =
_ silajel oD KNZA)
- “aE s
| KRAS |
b A

Gene network

DISEASOME PHENOME

Cirolaryngeal cancer

Li Fraumeni syndrome

Wilms tumor |

GENOME

i ¥
| BRCAZ |
h ey

|Frostate cancer

| Colon cancer

Leukemia

{
: Melnoma

|Fancaoni anemia
Fancreatic cancer

Bladder cancer
Breast cancar

[Histincyloma |

Lung cancer
FPolypasis
Hepatic adencma

Juwenile polyposis

Stomach cancer

Adrenal cortical camcinoma

Pautz-leghars syndrome

Goh, Cusick, Valle, Childs, Vidal & Barabasi, PNAS (2007)

Juvenile polyposis Li Fraumeni syndrom e
Orolargngeal cander
Palyposis

P Wilms tumar

Frostate cancer

FPeulz-Jeghers syndrome
Fanconi anemia

Fancraatic cancar
Breast cancer

[Adrenal cortical| |
carcinoma

Le.-ul-c.emia .E.l_a,cldgr cancar

‘Slomach cancer

Colon cancer LIJI'.IQ cancar
Histiocytoma ]

Hepatic adenoma

Disease network



Ingredient-Flavor Bipartite Network

A

Shrimp scampi and tomato broil

mussels

O oy ~q
28asoned

Y.-Y. Ahn, S. E. Ahnert, J. P. Bagrow, A.-L. Barabasi istFlavor network and the principles
of food pairing , Scientific Reports 196, (2011).

Ingredients
shrimp
. white
wina
mozzarella
parmesan

olive
il

parsley

tomato

garlic

. scallion
@ sesame oil
® oo
® ..
Sauce
nul

e
ALY

black
f papper

‘ saka

mussel

Flavor compounds B Flavor network

1-penten-3-ol
2-haxenal

2-isobutyl thiazole
2,3-diethylpyrazine Prevalence
2.4-nonadienal

J-hexen-1-ol

d-hydroxy-3-methyl...

4-methylpentanclc acld

acetyipyrazing 30%

allyl 2-furoate

alpha-terpineol

e T el L ]

Ci5-3-hixamnal

dihydroxyacatons 10 %
dimethyl succinate

ethyl proplonate |

hexyl alcohol - : O 1%
isoamyl alcohol » " 4 _ . 30

isobutyl acetate > o, i

Izobutyl alcohol A 'F ¥

lauric acid W : e

limanene (d-|-, and di-)

I-malic acid

methyl butyrate Shared compounds
maethyl hexanoate

mediyl prapyl trisulfide

nonanaic acid 100
phenethyl alcohol

prapenyl propyl disulfide 30
propionaldehyde

propyl disulfide

p-mentha-1,3-diena
p-roenth-1-gne-9-al
terpinyl acetals
tetrahydrofurfuryl alcohal
trans, trans-2,4-haxadienal

1

Network Science: Graph Theory



Categories
) fruils
dairy
@ e
. alcoholic beverages
ﬁ nuts and seeds

. seafoods
. meals
. herbs

. plant dervatives
. vegetables

.. flowers

. animal producls

. plants

cereal

Prevalence

Q-

@ =

@ 1%

Shared
compounds

5

- 50
10



secionzs |

PATHOLOGY



PATHS

A path is a sequence of nodes in which each node is adjacent to the next one

P.i» of length n between nodes iy and i, is an ordered collection of n+7 nodes and n links

Pn — {io,i],iz,...,in} Pn — {(io ail)a(ilaiz)a(iz A )9'"9(in—] Din)}

* In a directed network, the path can follow only the direction of an arrow.

Network Science: Graph Theory



The distance (shortest path, geodesic path) between two

A nodes is defined as the number of edges along the shortest

path connecting them.

D *If the two nodes are disconnected, the distance is infinity.

B In directed graphs each path needs to follow the direction of
A the arrows.
Thus in a digraph the distance from node Ato B (on an AB
path) is generally different from the distance from node B to A
D (on a BCA path).



CONNECTEDNESS



CONNECTIVITY OF UNDIRECTED GRAPHS

Connected (undirected) graph: any two vertices can be joined by a path.
A disconnected graph is made up by two or more connected components.

iSB B
A A: $
F
G F
G

Bridge: if we erase it, the graph becomes disconnected.

Largest Component:
Giant Component

The rest: Isolates



CONNECTIVITY OF UNDIRECTED GRAPHS

The adjacency matrix of a network with several components can be written in a block-
diagonal form, so that nonzero elements are confined to squares, with all other elements

being zero:

(a) / 00 0 0)

-ﬂ 00 0

i)

0 0 o

0 0 0 SN

0 0 O [EENEEE

\ 0 0 0 RSN/

(b)

Network Science: Graph Theory



CONNECTIVITY OF DIRECTED GRAPHS

Strongly connected directed graph: has a path from each node to
every other node and vice versa (e.g. AB path and BA path).

Weakly connected directed graph: it is connected if we disregard the
edge directions.

Strongly connected components can be identified, but not every node is part
of a nontrivial strongly connected component.

G

In-component: nodes that can reach the scc,
Out-component: nodes that can be reached from the scc.



Finding the Connected Components of a Network

1. Start from a randomly chosen node i and perform a BFS (BOX 2.5).
Label all nodes reached this way with n = 1.

2. If the total number of labeled nodes equals N, then the network is
connected. If the number of labeled nodes is smaller than N, the
network consists of several components. To identify them, proceed to
step 3.

3. Increase the label n & n + 1. Choose an unmarked node j, label it
with n. Use BFS to find all nodes reachable from j, label them all with n.
Return to step 2.



T

Clustering coefficient



CLUSTERING COEFFICIENT

% Clustering coefficient:

what fraction of your neighbors are connected?

%k Node i with degree ki

* Ciin[0,1]

2e.

[/

C, =
ki (ki - 1)

C; =1/2 C; =0

Watts & Strogatz, Nature 1998.



CLUSTERING COEFFICIENT

% Clustering coefficient:

what fraction of your neighbors are connected?

%k Node i with degree ki

* Ciin[0,1]

2e.

[/

C, =
ki (ki - 1)

C; =1/2 C; =0

Watts & Strogatz, Nature 1998.



CLUSTERING COEFFICIENT

% Clustering coefficient and Global clustering
coefficient

what fraction of your neighbors are connected?
sk Node i with degree ki

* Ciin[0,1]

2e.

[/

C, =
ki (ki - 1)

Watts & Strogatz, Nature 1998.



CLUSTERING COEFFICIENT

% Clustering coefficient and Global clustering
coefficient

what fraction of your neighbors are connected?
sk Node i with degree ki

* Ciin[0,1]

2e.

[/

C, =
ki (ki - 1)

Watts & Strogatz, Nature 1998.



summary



THREE CENTRAL QUANTITIES IN NETWORK SCIENCE

Degree distribution: P(k)
Path length: <d>
Clustering coefficient: C 2¢,

"k (k- 1)



GRAPHOLOGY pj

Undirected Directed

C\

(0 1 1 O (0 1 0 0)
1 0 1 1 O o0 1 1
A = A =
11 1 0 O 11 0 0 O
0 1 0 0 0o 0 0 0
Aii =N0 149{214‘]I AiiIO AgiAﬁ—
1 27, N
L==) A <k>— L—-S"4 k L
221 / N Z r SETTN

Actor network, protein-protein interactions WWW, citation networks



Unweighted Weighted
(undirected) (undirected)
(0 1 1 O0) (0 2 05 0)
1 0 1 1 2 0 1 4
A, = A, =
J 1 1 0O O 7105 1 0 0
0 1 o 0O . O 4 0 0/
A. =0 A, =A, A.=0 A, =4,
N N
L—%LJZIAI.J. <k>:% L—%”Zlnonzero(Aij) <k>= %

protein-protein interactions, www Call Graph, metabolic networks



Self-interactions
(1 1 1 0)
1 0 1 1
A =
7 [1 1 0 o
0o 1 0 1)
A.#0 A, =4,
1 N N
L= D, A, +D.A, ?
i j=lirj i=1

Protein interaction network, www

Multigraph

(undirected)

0 2 1 0
2 0 1 3
A =
/ 1 1 0O O
O 3 0 0
NAﬁ. =0 A, =4,
L= %”Zlnonzero(Aij) <k>= %

Social networks, collaboration networks



Complete Graph

(undirected)

[ ] @
] =
(0 1 1 1) ° °
1 0 1 1 4 5
A, =
7 11 1 0 1 . A
1l 1 1 0 "
AiiZO Ai;tjzl
L:mezm <k>=N-1

Actor network, protein-protein interactions



GRAPHOLOGY: Real networks can have multiple characteristics

WWW > directed multigraph with self-interactions

Protein Interactions > undirected unweighted with self-interactions

Collaboration network > undirected multigraph or weighted.
Mobile phone calls > directed, weighted.
Facebook Friendship links > undirected,

unweighted.



THREE CENTRAL QUANTITIES IN NETWORK SCIENCE

a e d ,=d;3=d, 4;=d3,=1
d; 5=d; ;=2 =d

max

a <d>=(4*1+2*2)/6=1.33

N B) <d>=133 () C,=0;C,=1/3=0.33
1/4 d_=2 C,=C,=1/1=1

<C>=1.33/4=0.33

o 1 2 3

A. Degree distribution: p, ={0.25; 0.5; 0.25}
B. Path length: <d>=1.33
C. Clustering coefficient: ¢ = —2°

kei(k; — 1)



A T
Adearirneg Thyrrire

c
Cylosing

| G
| Guanine

—
AT A GA AT AGA

IMTRON

GENOME

protein-gene
interactions

PROTEOME

protein-protein
interactions

L-AGPARTATE MALOMATE,
OXALO)

ACETAYE

METABOLISM

FUMARATE SUCCINATE

SUCCINATE _ coon Cog SH " ADP -
: & - =l gt 7: SUCCINYL-
2.AMINO.3 — PORPHY-
? OXOADIPATE RINS (5.1)
CoA-SH P e ey ,/E.':,- FAD == NADH 1 h 1 I
EoadiTE GOE TH: g of SH L ¢ £ (:' “H BIO-C el I “Ca
ACCEPTOR ACC-H sopnatalil COOH (mnv". ~ “
e A eatler g3 LIPOAMIDE %
Pyr P lilHl'.':.lll !|LH!(‘|.'| \\b Yi- S DIHYDRO A M
L GLUTAMATE =~ g e s TRANS Pc \ reaCtlonS
A Y
e \
- A GENASE %
OXALOACETATE | Citrate Cycle | su Y} > o

COOH
T



Metabolic Network










A CASE STUDY: PROTEIN-PROTEIN INTERACTION NETWORK

a. ) S b. ..
1t = '
. Undirected network
e S N=2,018 proteins as nodes
2 0| o hubs L=2,930 binding interactions as links.
i lx Average degree <k>=2.90.
- .% L ]
k Not connected: 185 components
i R —— the largest (giant component) 1,647
1 nodes
—_— x ......c‘..l
e “: ™
o .% ;
]




A CASE STUDY: PROTEIN-PROTEIN INTERACTION NETWORK

b. 1DD- r L] . LN B L |

P, is the probability that a
node has degree k.

™
101 Tk
Nk = # nodes with degree k
®e
. e = N*
- Nk =N
= 102 & hubs Pk
: =
]
el B There is the same
10-3 L number of hubs
o © S with the increasing
node degrees
10-4 | -
10° 10°



A CASE STUDY: PROTEIN-PROTEIN INTERACTION NETWORK




A CASE STUDY: PROTEIN-PROTEIN INTERACTION NETWORK

d- 1*:'["? il el T v oy
o 0% 0 Ci=1/2
g » ..lr:l .
:‘;E"'m-l ’ # '. _ C 2e,
O | S e : "k (k, -1)
: e 3
# I <C>=0.12
102 —tetres) =
100 102 102 103



Node

ave

maXx

© N O A W N R

deg

w w un uu L1 L1 W W

cc

1
1
0.6
0.6
0.6
0.6
1

N=8, E=16

paths
3*1+2%2+42%3=13
3*1+2*2+2%3=13
5*%1+2*2=9
5*1+2*2=9
5*¥1+2%2=9
5*1+2%2=9
3*1+2*2+2%3=13
3*¥142*2+2%3=13

1.571428571
3

deg

N W W NN W NN NN W

cc

1
3
-
v
5
N=8, E=10
7
paths
0.33 3%142%2+2*3=13
1 2*1+2*2+2*3+4=16
0 2*¥1+4*2+3=13
0.33 3*%142*%2+2*3=13
0 2*¥1+4*2+3=13
0.33 3%142%2+2*3=13
0.33 3*1+2*2+2*3=13
1 2*1+42*2+2*3+4=16
0.33 1.928571429
1 4

|4

All edges are bridges
No cycles

N=8, E=7

deg cc paths
2*1+2*2+3+4+5=18
2*1+2+3+4+45+6=22
2*¥1+42*2+2*3+4=16
1+2+3+4+5+6+7=28
2*¥142*2+2*3+4=16
2*1+2*2+3+4+5=18
1+2+3+4+5+6+7=28

2*%1+243+4+5+6=22

N P NN P N NN
o O O O O o o o

175 O 3
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Introduction






The random network model



RANDOM NETWORK MODEL

Alfréd Rényi
(1921-1970)

Pal Erdos
(1913-1996)

Erdos-Rényi model (1960)

Connect with probability p

p=1/6 N=10
<k>~1.5



RANDOM NETWORK MODEL

G(N, L) Model

N labeled nodes are connect-
Definition: ed with L randomly placed

links. Erdés and Rényi used

A random graph is a graph of N nodes where each pair this definition in their string

of nodes is connected by probability p. of papers on random net-
works [2-9].

G(N, p) Model

Each pair of N labeled nodes
is connected with probability
p, a model introduced by Gil-
bert [10].



RANDOM NETWORK MODEL

p=1/6
N=12
o o o o
o o o ®
\ \
0K \\o o ?
o ® ® o
o o ® ®
e © o o

Network Science: Random Networks



RANDOM NETWORK MODEL




The number of links is variable



RANDOM NETWORK MODEL

p=1/6
N=12
o o o o
o o o ®
\ \
0K \\o o ?
o ® ® o
o o ® ®
e © o o

Network Science: Random Networks



RANDOM NETWORK MODEL




The number of links is variable



RANDOM NETWORK MODEL

p=1/6
N=12
o o o o
o o o ®
\ \
0K \\o o ?
o ® ® o
o o ® ®
e © o o

Network Science: Random Networks



Number of links in a random network

P(L): the probability to have exactly L links in a network of N nodes and probability p:

The maximum number of links
in a network of N nodes.

N NN
P)=|\2]Ip"a-p) 2 Binomial distribution...
L

o

Number of different ways we can choose
L links among all potential links.



MATH TUTORIAL | Binomial Distribution: The bottom line

N X N—x
P(x) = <P (1-p)
<x>=Np
<x*>=p(l-p)N+p°N"

o =(<k>>—-<k>)"=[p(1- p)N]"

http://keral2008.blogspot.com/2008/10/derivation-of-mean-and-variance-of.html



RANDOM NETWORK MODEL

P(L): the probability to have a network of exactly L links

N NOv-1
P(L)J[zﬁp ‘(1-p) ° B

()

*The average number of links <L> in a random graph

N(N-1)

<L>= 22: LP(L)=p

=0

NV -1) <k>=2L/N = p(N -1)
2

*The standard deviation

N(N )

o’ =p(-p)



Degree distribution



DEGREE DISTRIBUTION OF A RANDOM GRAPH

P(k) =[ L lpra—p

— TN

P(K)

Select k prpbgbility of
<k> nodes from N-1 orobability of ;ndlzsélgg N-1-k
& having k edges
<k>=p(N-1) o, = p(l-p)(N -1)

1/2
o, [1 —p 1 } 1
<k> | p (N-D (N -1)"?
As the network size increases, the distribution becomes increasingly narrow—we are
increasingly confident that the degree of a node is in the vicinity of <k>.



DEGREE DISTRIBUTION OF A RANDOM GRAPH

N—-1 k N-1)-k
P(k)=( L JP A-p* <k>=p(N-1) pz(;k_j)

For large N and small k, we can use the following approximations:

[N—l}_ (N-1!  (N-DWN-1-DN-1-2).(N—1—k+1)N—-1—k) (N-D*

k) BRWN-1-k) K(N —1-k)! 7
ln[(l—p)(N_l)_k]:(N—l—k)]n(l—<k>) (N-1- k)—:—<k>(l—%);—<k>
A-p) P =e® In(1+x) = Z( l)mx _x—x—2+x—3—... for ‘x|£1

2 3

N-1 N-1 B N-DV(<k>) . e <k
P(k):( k ka(l )(N l}k ( k') k k> ( k') [N_l)e k>:e k> k'




POISSON DEGREE DISTRIBUTION

N -1 k N-1)-k
P(k)=( L JP A-p) <k>=p(N-1) pz(;k_j)

For large N and small k, we arrive at the Poisson distribution:

k
L <k >

P(h)=e "=




DEGREE DISTRIBUTION OF A RANDOM GRAPH

k
k> < k>
<k>=50 P(k) .
I k!
Poisson --
JETN Binomial -
0.075 | ; g.: g |
é.. &‘; N = ]_[_]3 =)
¢ el A , )
£ oos | pb]|
N=10°V
0.025

= -

80

X;-a--ﬂ-mﬂ_
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